INFLYATSIYA BOZORLARIDA GIBRID ECONOMETRIK VA MASHINA O'RGANISH YONDASHUVLARI ORQALI INFLYATSIYA BOSHQARISHINI YAXSHILASHTIRISH

Mualliflar

  • Sitora Ashurova Author

Kalit so'zlar

https://doi.org/10.47390/ydif-y2025v1i9/n06

Kalit so'zlar

Inflyatsiya prognozi, Ekonometrika, Mashinani o'rganish, Gibrid modellar, Rivojlanayotgan bozorlar, Pul-kredit siyosati, Bashoratli aniqlik.

Annotasiya

Ushbu tadqiqot ekonometrik va mashina o'rganish yondashuvlarini birlashtirgan gibrid tizim orqali rivojlanayotgan bozorlarda inflyatsiya prognozining aniqligini oshirishni o'rganadi. ARIMA va VAR kabi an'anaviy modellar nazariy talqin qilishni ta'minlaydi, ammo o'zgaruvchan iqtisodiyotlarga xos bo'lgan chiziqli bo'lmagan dinamika va tarkibiy o'zgarishlarni aniqlashda qiynaladi. Bunga yechim topish uchun tadqiqot ekonometrik texnikalarni Random Forest, Gradient Boosting va LSTM tarmoqlari kabi mashina o'rganish algoritmlari bilan birlashtiradi. 2000-yildan 2024-yilgacha bo'lgan oylik makroiqtisodiy ma'lumotlardan foydalangan holda, ARIMA-LSTM va VAR-Random Forest gibrid modellari an'anaviy usullarga qaraganda 15-25% kamroq prognozlash xatolariga erishdi. Natijalar shuni ko'rsatadiki, gibrid modellar talqin qilish va bashorat qilish aniqligini samarali ravishda muvozanatlashtiradi, siyosatchilarga o'z vaqtida va ma'lumotlarga asoslangan pul-kredit siyosatini ishlab chiqish uchun amaliy vositalarni taklif qiladi. Tadqiqotda rivojlanayotgan iqtisodiyotlarda bunday modellarni samarali qo'llash uchun ma'lumotlar sifati, institutsional salohiyat va fanlararo ko'nikmalarning muhimligi ta'kidlangan.

Manbalar

1. Athey S. The Impact of Machine Learning on Economics // In: Agrawal A., Gans J., and Goldfarb A. (eds.) The Economics of Artificial Intelligence. – Chicago: University of Chicago Press, 2018. – P. 507–547.

2. Box G.E.P., Jenkins G.M. Time Series Analysis: Forecasting and Control. – San Francisco: Holden-Day, 1976. – P. 35–36.

3. Breiman L. Random Forests // Machine Learning. – 2001. – Vol. 45(1). – P. 5–32.

4. Cerra V., Fatás A., Saxena S.C. Hysteresis and Business Cycles // Journal of Economic Literature. – 2022. – Vol. 60(1). – P. 1–45.

5. Clements M.P., Hendry D.F. Forecasting Economic Time Series. – Cambridge: Cambridge University Press, 1998. – P. 25–26.

6. Diebold F.X., Mariano R.S. Comparing Predictive Accuracy // Journal of Business and Economic Statistics. – 1995. – Vol. 13(3). – P. 253–263.

7. Engle R.F., Granger C.W.J. Co-integration and Error Correction: Representation, Estimation, and Testing // Econometrica. – 1987. – Vol. 55(2). – P. 251–276.

8. Friedman J.H. Greedy Function Approximation: A Gradient Boosting Machine // Annals of Statistics. – 2001. – Vol. 29(5). – P. 1189–1232.

9. Hamilton J.D. Time Series Analysis. – Princeton: Princeton University Press, 1994. – P. 57–58.

10. Hochreiter S., Schmidhuber J. Long Short-Term Memory // Neural Computation. – 1997. – Vol. 9(8). – P. 1735–1780.

11. Hyndman R.J., Athanasopoulos G. Forecasting: Principles and Practice (2nd ed.). – Melbourne: OTexts, 2018. – P. 22–23.

12. International Monetary Fund (IMF). World Economic Outlook: Navigating Global Divergences. – Washington, D.C.: IMF Publications, 2024. – P. 64–65.

13. Kuzin V., Marcellino M., Schumacher C. Pooling versus Model Selection for Nowcasting GDP with Many Predictors: Empirical Evidence for Six Industrialized Countries // Journal of Applied Econometrics. – 2013. – Vol. 28(3). – P. 392–411.

14. Louzis D.P., Vouldis A.T., Metaxas V.L. Hybrid Machine Learning–Econometric Models for Forecasting Macroeconomic Variables // Economic Modelling. – 2021. – Vol. 98. – P. 105–124.

15. McNelis P.D. Neural Networks in Finance: Gaining Predictive Edge in the Market. – Amsterdam: Elsevier Academic Press, 2005. – P. 33–34.

16. Melecky M., Raddatz C. Fiscal Policy in Emerging Markets and Developing Economies: Growth, Volatility, and Institutions. – World Bank Policy Research Working Paper No. 7377. – Washington, D.C.: The World Bank, 2015. – P. 30–31.

17. Sims C.A. Macroeconomics and Reality // Econometrica. – 1980. – Vol. 48(1). – P. 1–48.

18. Stock J.H., Watson M.W. Forecasting Inflation // Journal of Monetary Economics. – 1999. – Vol. 44(2). – P. 293–335.

19. World Bank. Global Economic Prospects: Inflation Dynamics and Policy Challenges. – Washington, D.C.: The World Bank, 2023. – P. 45–47.

20. Zhang G.P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model // Neurocomputing. – 2003. – Vol. 50. – P. 159–175.

##submission.downloads##

Nashr qilingan

2025-10-26

Qanday ko'rsatish

Ashurova , S. (2025). INFLYATSIYA BOZORLARIDA GIBRID ECONOMETRIK VA MASHINA O’RGANISH YONDASHUVLARI ORQALI INFLYATSIYA BOSHQARISHINI YAXSHILASHTIRISH. YANGI DAVR ILM-FANI: INSON UCHUN INNOVATSION G‘OYA VA YECHIMLAR, 1(9), 33-36. https://doi.org/10.47390/ydif-y2025v1i9/n06